extension | φ:Q→Out N | d | ρ | Label | ID |
(Q8xC32).1S3 = He3:6Q16 | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 144 | 12- | (Q8xC3^2).1S3 | 432,160 |
(Q8xC32).2S3 = Dic18.C6 | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 144 | 12- | (Q8xC3^2).2S3 | 432,162 |
(Q8xC32).3S3 = D36.C6 | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 72 | 12+ | (Q8xC3^2).3S3 | 432,163 |
(Q8xC32).4S3 = He3:7Q16 | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 144 | 6 | (Q8xC3^2).4S3 | 432,197 |
(Q8xC32).5S3 = C32.CSU2(F3) | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 144 | 12- | (Q8xC3^2).5S3 | 432,243 |
(Q8xC32).6S3 = C3xQ8.D9 | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 144 | 4 | (Q8xC3^2).6S3 | 432,244 |
(Q8xC32).7S3 = C32.GL2(F3) | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 72 | 12+ | (Q8xC3^2).7S3 | 432,245 |
(Q8xC32).8S3 = C3xQ8:D9 | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 144 | 4 | (Q8xC3^2).8S3 | 432,246 |
(Q8xC32).9S3 = C32:CSU2(F3) | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 144 | 12- | (Q8xC3^2).9S3 | 432,247 |
(Q8xC32).10S3 = C32.3CSU2(F3) | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 432 | | (Q8xC3^2).10S3 | 432,255 |
(Q8xC32).11S3 = C32.3GL2(F3) | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 216 | | (Q8xC3^2).11S3 | 432,256 |
(Q8xC32).12S3 = C32:2CSU2(F3) | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 144 | 6 | (Q8xC3^2).12S3 | 432,257 |
(Q8xC32).13S3 = Q8xC9:C6 | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 72 | 12- | (Q8xC3^2).13S3 | 432,370 |
(Q8xC32).14S3 = D36:3C6 | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 72 | 12+ | (Q8xC3^2).14S3 | 432,371 |
(Q8xC32).15S3 = C3xC6.5S4 | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 48 | 4 | (Q8xC3^2).15S3 | 432,616 |
(Q8xC32).16S3 = C32:4CSU2(F3) | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 144 | | (Q8xC3^2).16S3 | 432,619 |
(Q8xC32).17S3 = C32xCSU2(F3) | φ: S3/C1 → S3 ⊆ Out Q8xC32 | 144 | | (Q8xC3^2).17S3 | 432,613 |
(Q8xC32).18S3 = C3xC9:Q16 | φ: S3/C3 → C2 ⊆ Out Q8xC32 | 144 | 4 | (Q8xC3^2).18S3 | 432,156 |
(Q8xC32).19S3 = C3xQ8:2D9 | φ: S3/C3 → C2 ⊆ Out Q8xC32 | 144 | 4 | (Q8xC3^2).19S3 | 432,157 |
(Q8xC32).20S3 = C36.19D6 | φ: S3/C3 → C2 ⊆ Out Q8xC32 | 432 | | (Q8xC3^2).20S3 | 432,194 |
(Q8xC32).21S3 = C36.20D6 | φ: S3/C3 → C2 ⊆ Out Q8xC32 | 216 | | (Q8xC3^2).21S3 | 432,195 |
(Q8xC32).22S3 = C3xQ8xD9 | φ: S3/C3 → C2 ⊆ Out Q8xC32 | 144 | 4 | (Q8xC3^2).22S3 | 432,364 |
(Q8xC32).23S3 = C3xQ8:3D9 | φ: S3/C3 → C2 ⊆ Out Q8xC32 | 144 | 4 | (Q8xC3^2).23S3 | 432,365 |
(Q8xC32).24S3 = Q8xC9:S3 | φ: S3/C3 → C2 ⊆ Out Q8xC32 | 216 | | (Q8xC3^2).24S3 | 432,392 |
(Q8xC32).25S3 = C36.29D6 | φ: S3/C3 → C2 ⊆ Out Q8xC32 | 216 | | (Q8xC3^2).25S3 | 432,393 |
(Q8xC32).26S3 = C3xC32:7Q16 | φ: S3/C3 → C2 ⊆ Out Q8xC32 | 144 | | (Q8xC3^2).26S3 | 432,494 |
(Q8xC32).27S3 = C33:15Q16 | φ: S3/C3 → C2 ⊆ Out Q8xC32 | 432 | | (Q8xC3^2).27S3 | 432,510 |
(Q8xC32).28S3 = C32xC3:Q16 | φ: S3/C3 → C2 ⊆ Out Q8xC32 | 144 | | (Q8xC3^2).28S3 | 432,478 |